2 ÖÄÄÄÄÄÄÄÄÄÄ´% VLA Presents: Intro to Assembler %ÃÄÄÄÄÄÄÄÄÄÄ·
\r
4 ÓÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄĽ
\r
8 ¯ Dedicated To Those Who Wish To Begin Exploring The Art Of Assembler. ®
\r
12 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\ 4 VLA Members Are
\ 4 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
14 (© Draeden - Main Coder ª)
\r
15 (© The Priest - Coder/ Artist ª)
\r
16 (© Lithium - Coder/Ideas/Ray Tracing ª)
\r
17 (© The Kabal - Coder/Ideas/Artwork ª)
\r
18 (© Desolation - Artwork/Ideas ª)
\r
20 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ The Finn - Mods/Sounds ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
23 ÖÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ͵ Contact Us On These Boards ÆÍÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ·
\r
25 ³ % Phantasm BBS .................................. (206) 232-5912 ³
\r
26 ³ * The Deep ...................................... (305) 888-7724 ³
\r
27 ³ * Dark Tanget Systems ........................... (206) 722-7357 ³
\r
28 ³ * Metro Holografix .............................. (619) 277-9016 ³
\r
30 º % - World Head Quarters * - Distribution Site º
\r
31 ÓÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄĽ
\r
33 Or Via Internet Mail For The Group: tkabal@carson.u.washington.edu
\r
35 Or to reach the other members:
\r
37 - draeden@u.washington.edu -
\r
39 - lithium@u.washington.edu -
\r
41 - desolation@u.washington.edu-
\r
44 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
45 VLA 3/93 Introduction to ASSEMBLER
\r
46 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
48 Here's something to help those of you who were having trouble understanding
\r
49 the instructional programs we released. Dreaden made these files for the
\r
50 Kabal and myself when we were just learning. These files go over some of
\r
51 the basic concepts of assembler. Bonus of bonuses. These files also have
\r
52 programs imbedded in them. Most of them have a ton of comments so even
\r
53 the beginning programmers should be able to figure them out.
\r
55 If you'd like to learn more, post a message on Phantasm. We need to know
\r
56 where you're interests are before we can make more files to bring out the
\r
57 little programmers that are hiding inside all of us.
\r
61 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
63 First thing ya need to know is a little jargon so you can talk about
\r
64 the basic data structures with your friends and neighbors. They are (in
\r
65 order of increasing size) BIT, NIBBLE, BYTE, WORD, DWORD, FWORD, PWORD and
\r
66 QWORD, PARA, KiloByte, MegaByte. The ones that you'll need to memorize are
\r
67 BYTE, WORD, DWORD, KiloByte, and MegaByte. The others aren't used all that
\r
68 much, and you wont need to know them to get started. Here's a little
\r
69 graphical representation of a few of those data structures:
\r
71 (The zeros in between the || is a graphical representation of the number of
\r
72 bits in that data structure.)
\r
77 The simplest piece of data that exists. Its either a 1 or a zero.
\r
78 Put a string of them together and you have a BASE-2 number system.
\r
79 Meaning that instead of each 'decimal' place being worth 10, its only
\r
80 worth 2. For instance: 00000001 = 1; 00000010 = 2; 00000011 = 3, etc..
\r
86 The NIBBLE is half a BYTE or four BITS. Note that it has a maximum value
\r
87 of 15 (1111 = 15). Not by coincidence, HEXADECIMAL, a base 16 number
\r
88 system (computers are based on this number system) also has a maximum
\r
89 value of 15, which is represented by the letter 'F'. The 'digits' in
\r
90 HEXADECIMAL are (in increasing order):
\r
94 The standard notation for HEXADECIMAL is a zero followed by the number
\r
95 in HEX followed by a lowercase "h" For instance: "0FFh" = 255 DECIMAL.
\r
102 The BYTE is the standard chunk of information. If you asked how much
\r
103 memory a machine had, you'd get a response stating the number of BYTEs it
\r
104 had. (Usually preceded by a 'Mega' prefix). The BYTE is 8 BITs or
\r
105 2 NIBBLEs. A BYTE has a maximum value of 0FFh (= 255 DECIMAL). Notice
\r
106 that because a BYTE is just 2 NIBBLES, the HEXADECIMAL representation is
\r
107 simply two HEX digits in a row (ie. 013h, 020h, 0AEh, etc..)
\r
109 The BYTE is also that size of the 'BYTE sized' registers - AL, AH, BL, BH,
\r
113 1 WORD |0000000000000000|
\r
114 2 BYTEs ÀÄ AH ÄÙÀÄ AL ÄÙ
\r
115 4 NIBBLEs ÀÄÄÄÄÄ AX ÄÄÄÄÄÙ
\r
118 The WORD is just two BYTEs that are stuck together. A word has a maximum
\r
119 value of 0FFFFh (= 65,535). Since a WORD is 4 NIBBLEs, it is represented
\r
120 by 4 HEX digits. This is the size of the 16bit registers on the 80x86
\r
121 chips. The registers are: AX, BX, CX, DX, DI, SI, BP, SP, CS, DS, ES, SS,
\r
122 and IP. Note that you cannot directly change the contents of IP or CS in
\r
123 any way. They can only be changed by JMP, CALL, or RET.
\r
127 2 WORDs |00000000000000000000000000000000|
\r
128 4 BYTEs ³ ÀÄ AH ÄÙÀÄ AL ÄÙ
\r
129 8 NIBBLEs ³ ÀÄÄÄÄÄ AX ÄÄÄÄÄÙ
\r
130 32 BITs ÀÄÄÄÄÄÄÄÄÄÄÄÄ EAX ÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
\r
132 A DWORD (or "DOUBLE WORD") is just two WORDs, hence the name DOUBLE-WORD.
\r
133 This can have a maximum value of 0FFFFFFFFh (8 NIBBLEs, 8 'F's) which
\r
134 equals 4,294,967,295. Damn large. This is also the size or the 386's
\r
135 32bit registers: EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, EIP. The 'E '
\r
136 denotes that they are EXTENDED registers. The lower 16bits is where the
\r
137 normal 16bit register of the same name is located. (See diagram.)
\r
140 1 KILOBYTE |-lots of zeros (8192 of 'em)-|
\r
147 We've all heard the term KILOBYTE byte, before, so I'll just point out
\r
148 that a KILOBYTE, despite its name, is -NOT- 1000 BYTEs. It is actually
\r
152 1 MEGABYTE |-even more zeros (8,388,608 of 'em)-|
\r
160 Just like the KILOBYTE, the MEGABYTE is -NOT- 1 million bytes. It is
\r
161 actually 1024*1024 BYTEs, or 1,048,578 BYTEs
\r
163 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
165 Now that we know what the different data types are, we will investigate
\r
166 an annoying little aspect of the 80x86 processors. I'm talking about
\r
167 nothing other than SEGMENTS & OFFSETS!
\r
170 SEGMENTS & OFFSETS:
\r
172 Pay close attention, because this topic is (I believe) the single most
\r
173 difficult (or annoying, once you understand it) aspect of ASSEMBLER.
\r
177 The original designers of the 8088, way back when dinasaurs ruled the
\r
178 planet, decided that no one would ever possibly need more than one MEG
\r
179 (short for MEGABYTE :) of memory. So they built the machine so that it
\r
180 couldn't access above 1 MEG. To access the whole MEG, 20 BITs are needed.
\r
181 Problem was that the registers only had 16 bits, and if the used two
\r
182 registers, that would be 32 bits, which was way too much (they thought.)
\r
183 So they came up with a rather brilliant (blah) way to do their addressing-
\r
184 they would use two registers. They decided that they would not be 32bits,
\r
185 but the two registers would create 20 bit addressing. And thus Segments
\r
186 and OFfsets were born. And now the confusing specifics.
\r
190 OFFSET = SEGMENT*16
\r
191 SEGMENT = OFFSET /16 ;note that the lower 4 bits are lost
\r
194 SEGMENT * 16 |0010010000010000----| range (0 to 65535) * 16
\r
196 OFFSET |----0100100000100010| range (0 to 65535)
\r
198 20 bit address |00101000100100100010| range 0 to 1048575 (1 MEG)
\r
203 This shows how DS:SI is used to construct a 20 bit address.
\r
205 Segment registers are: CS, DS, ES, SS. On the 386+ there are also FS & GS
\r
207 Offset registers are: BX, DI, SI, BP, SP, IP. In 386+ protected mode, ANY
\r
208 general register (not a segment register) can be used as an Offset
\r
209 register. (Except IP, which you can't access.)
\r
211 CS:IP => Points to the currently executing code.
\r
212 SS:SP => Points to the current stack position.
\r
216 If you'll notice, the value in the SEGMENT register is multiplied by
\r
217 16 (or shifted left 4 bits) and then added to the OFFSET register.
\r
218 Together they create a 20 bit address. Also Note that there are MANY
\r
219 combinations of the SEGMENT and OFFSET registers that will produce the
\r
220 same address. The standard notation for a SEGment/OFFset pair is:
\r
223 SEGMENT:OFFSET or A000:0000 ( which is, of course in HEX )
\r
225 Where SEGMENT = 0A000h and OFFSET = 00000h. (This happens to be the
\r
226 address of the upper left pixel on a 320x200x256 screen.)
\r
229 You may be wondering what would happen if you were to have a segment
\r
230 value of 0FFFFh and an offset value of 0FFFFh.
\r
232 Take notice: 0FFFFh * 16 (or 0FFFF0h ) + 0FFFFh = 1,114,095, which is
\r
233 definately larger than 1 MEG (which is 1,048,576.)
\r
235 This means that you can actually access MORE than 1 meg of memory!
\r
236 Well, to actually use that extra bit of memory, you would have to enable
\r
237 something called the A20 line, which just enables the 21st bit for
\r
238 addressing. This little extra bit of memory is usually called
\r
239 "HIGH MEMORY" and is used when you load something into high memory or
\r
240 say DOS = HIGH in your AUTOEXEC.BAT file. (HIMEM.SYS actually puts it up
\r
241 there..) You don't need to know that last bit, but hey, knowledge is
\r
244 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
246 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
248 I've mentioned AX, AL, and AH before, and you're probably wondering what
\r
249 exactly they are. Well, I'm gonna go through one by one and explain
\r
250 what each register is and what it's most common uses are. Here goes:
\r
254 AX is a 16 bit register which, as metioned before, is merely two bytes
\r
255 attached together. Well, for AX, BX, CX, & DX you can independantly
\r
256 access each part of the 16 bit register through the 8bit (or byte sized)
\r
257 registers. For AX, they are AL and AH, which are the Low and High parts
\r
258 of AX, respectivly. It should be noted that any change to AL or AH,
\r
259 will change AX. Similairly any changes to AX may or may not change AL and
\r
263 Let's suppose that AX = 00000h (AH and AL both = 0, too)
\r
269 Now we set AL = 0FFh.
\r
273 :AX => 000FFh ;I'm just showing ya what's in the registers
\r
277 Now we increase AX by one:
\r
281 :AX => 00100h (= 256.. 255+1= 256)
\r
282 :AL => 000h (Notice that the change to AX changed AL and AH)
\r
285 Now we set AH = 0ABh (=171)
\r
293 Notice that the first example was just redundant...
\r
294 We could've set AX = 0 by just doing
\r
302 I think ya got the idea...
\r
305 SPECIAL USES OF AX:
\r
306 Used as the destination of an IN (in port)
\r
310 Source for the output for an OUT
\r
314 Destination for LODS (grabs byte/word from [DS:SI] and INCreses SI)
\r
315 ex: lodsb (same as: mov al,[ds:si] ; inc si )
\r
316 lodsw (same as: mov ax,[ds:si] ; inc si ; inc si )
\r
318 Source for STOS (puts AX/AL into [ES:DI] and INCreses DI)
\r
319 ex: stosb (same as: mov [es:di],al ; inc di )
\r
320 stosw (same as: mov [es:di],ax ; inc di ; inc di )
\r
322 Used for MUL, IMUL, DIV, IDIV
\r
324 BX (BH/BL): same as AX (BH/BL)
\r
327 As mentioned before, BX can be used as an OFFSET register.
\r
328 ex: mov ax,[ds:bx] (grabs the WORD at the address created by
\r
331 CX (CH/CL): Same as AX
\r
334 Used in REP prefix to repeat an instruction CX number of times
\r
337 rep stosb ;this would write 10 zeros to [ES:DI] and increase
\r
343 ;do something that would print out 'HI'
\r
345 loop THELABEL ;this would print out 'HI' 100 times
\r
346 ;the loop is the same as: dec cx
\r
349 DX (DH/DL): Same as above
\r
351 USED in word sized MUL, DIV, IMUL, IDIV as DEST for high word
\r
356 mul bx ;this multiplies BX by AX and puts the result
\r
359 ex: (continue from above)
\r
360 div bx ;this divides DX:AX by BX and put the result in AX and
\r
361 ;the remainder (in this case zero) in DX
\r
363 Used as address holder for IN's, and OUT's (see ax's examples)
\r
367 DI: Used as destination address holder for stos, movs (see ax's examples)
\r
368 Also can be used as an OFFSET register
\r
370 SI: Used as source address holder for lods, movs (see ax's examples)
\r
371 Also can be used as OFFSET register
\r
374 movsb ;moves whats at [DS:SI] into [ES:DI] and increases
\r
375 movsw ; DI and SI by one for movsb and 2 for movsw
\r
377 NOTE: Up to here we have assumed that the DIRECTION flag was cleared.
\r
378 If the direction flag was set, the DI & SI would be DECREASED
\r
379 instead of INCREASED.
\r
380 ex: cld ;clears direction flag
\r
381 std ;sets direction flag
\r
383 STACK RELATED INDEX REGISTERS:
\r
384 BP: Base Pointer. Can be used to access the stack. Default segment is
\r
385 SS. Can be used to access data in other segments throught the use
\r
386 of a SEGMENT OVERRIDE.
\r
388 ex: mov al,[ES:BP] ;moves a byte from segment ES, offset BP
\r
389 Segment overrides are used to specify WHICH of the 4 (or 6 on the
\r
390 386) segment registers to use.
\r
392 SP: Stack Pointer. Does just that. Segment overrides don't work on this
\r
393 guy. Points to the current position in the stack. Don't alter unless
\r
394 you REALLY know what you are doing.
\r
397 DS: Data segment- all data read are from the segment pointed to be this
\r
398 segment register unless a segment overide is used.
\r
399 Used as source segment for movs, lods
\r
400 This segment also can be thought of as the "Default Segment" because
\r
401 if no segment override is present, DS is assumed to be the segmnet
\r
402 you want to grab the data from.
\r
404 ES: Extra Segment- this segment is used as the destination segment
\r
406 Can be used as just another segment... You need to specify [ES:°°]
\r
407 to use this segment.
\r
409 FS: (386+) No particular reason for it's name... I mean, we have CS, DS,
\r
410 and ES, why not make the next one FS? :) Just another segment..
\r
412 GS: (386+) Same as FS
\r
415 OTHERS THAT YOU SHOULDN'T OR CAN'T CHANGE:
\r
416 CS: Segment that points to the next instruction- can't change directly
\r
417 IP: Offset pointer to the next instruction- can't even access
\r
418 The only was to change CS or IP would be through a JMP, CALL, or RET
\r
420 SS: Stack segment- don't mess with it unless you know what you're
\r
421 doing. Changing this will probably crash the computer. This is the
\r
422 segment that the STACK resides in.
\r
425 Heck, as long as I've mentioned it, lets look at the STACK:
\r
427 The STACK is an area of memory that has the properties of a STACK of
\r
428 plates- the last one you put on is the first one take off. The only
\r
429 difference is that the stack of plates is on the roof. (Ok, so that
\r
430 can't really happen... unless gravity was shut down...) Meaning that
\r
431 as you put another plate (or piece of data) on the stack, the STACK grows
\r
432 DOWNWARD. Meaning that the stack pointer is DECREASED after each PUSH,
\r
433 and INCREASED after each POP.
\r
435 _____ Top of the allocated memory in the stack segment (SS)
\r
439 þ ® SP (the stack pointer points to the most recently pushed byte)
\r
441 Truthfully, you don't need to know much more than a stack is Last In,
\r
444 WRONG ex: push cx ;this swaps the contents of CX and AX
\r
445 push ax ;of course, if you wanted to do this quicker, you'd
\r
447 pop cx ;just say XCHG cx,ax
\r
448 pop ax ; but thats not my point.
\r
450 RIGHT ex: push cx ;this correctly restores AX & CX
\r
458 Now I'll do a quick run through on the assembler instructions that you MUST
\r
464 Examples of different addressing modes:
\r
466 MOV ax,5 ;moves and IMMEDIATE value into ax (think 'AX = 5')
\r
467 MOV bx,cx ;moves a register into another register
\r
468 MOV cx,[SI] ;moves [DS:SI] into cx (the Default Segment is Used)
\r
469 MOV [DI+5],ax ;moves ax into [DS:DI+5]
\r
470 MOV [ES:DI+BX+34],al ;same as above, but has a more complicated
\r
471 ;OFFSET (=DI+BX+34) and a SEGMENT OVERRIDE
\r
472 MOV ax,[546] ;moves whats at [DS:546] into AX
\r
474 Note that the last example would be totally different if the brackets
\r
475 were left out. It would mean that an IMMEDIATE value of 546 is put into
\r
476 AX, instead of what's at offset 546 in the Default Segment.
\r
478 ANOTHER STANDARD NOTATION TO KNOW:
\r
479 Whenever you see brackets [] around something, it means that it refers to
\r
480 what is AT that offset. For instance, say you had this situation:
\r
488 What is that supposed to mean? Is MyData an Immediate Value? This is
\r
489 confusing and for our purposes WRONG. The 'Correct' way to do this would
\r
498 This is clearly moving what is AT the address of MyData, which would be
\r
499 55, and not moving the OFFSET of MyData itself. But what if you
\r
500 actually wanted the OFFSET? Well, you must specify directly.
\r
505 mov ax,OFFSET MyData
\r
508 Similiarly, if you wanted the SEGMENT that MyData was in, you'd do this:
\r
516 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
519 INT 21h ;calls DOS standard interrupt # 21h
\r
520 INT 10h ;the Video BIOS interrupt..
\r
522 INT is used to call a subroutine that performs some function that you'd
\r
523 rather not write yourself. For instance, you would use a DOS interrupt
\r
524 to OPEN a file. You would similiarly use the Video BIOS interrupt to
\r
525 set the screen mode, move the cursor, or to do any other function that
\r
526 would be difficult to program.
\r
528 Which subroutine the interrupt preforms is USUALLY specified by AH.
\r
529 For instance, if you wanted to print a message to the screen you'd
\r
530 use INT 21h, subfunction 9 by doing this:
\r
537 Yes, it's that easy. Of course, for that function to do anything, you
\r
538 need to specify WHAT to print. That function requires that you have
\r
539 DS:DX be a FAR pointer that points to the string to display. This string
\r
540 must terminate with a dollar sign. Here's an example:
\r
543 MyMessage db "This is a message!$"
\r
545 mov dx,OFFSET MyMessage
\r
546 mov ax,SEG MyMessage
\r
553 The DB, like the DW (and DD) merely declares the type of a piece of data.
\r
555 DB => Declare Byte (I think of it as 'Data Byte')
\r
557 DD => Declare Dword
\r
559 Also, you may have noticed that I first put the segment value into AX
\r
560 and then put it into DS. I did that because the 80x86 does NOT allow
\r
561 you to put an immediate value into a segment register. You can, however,
\r
562 pop stuff into a Segment register or mov an indexed value into the
\r
563 segment register. A few examples:
\r
567 mov ax,SEG MyMessage
\r
573 mov ds,[SegOfMyMessage]
\r
574 ;where [SegOfMyMessage] has already been loaded with
\r
575 ; the SEGMENT that MyMessage resides in
\r
578 mov ds,SEG MyMessage
\r
581 Well, that's about it for what you need to know to get started...
\r
583 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
584 And now the FRAME for an ASSEMBLER program.
\r
585 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
587 The Basic Frame for an Assembler program using Turbo Assembler simplified
\r
592 DOSSEG ;This arranges the segments in order according DOS standards
\r
594 .MODEL SMALL ;dont worry about this yet
\r
595 .STACK 200h ;tells the compiler to put in a 200h byte stack
\r
596 .CODE ;starts code segment
\r
598 ASSUME CS:@CODE, DS:@CODE
\r
600 START: ;generally a good name to use as an entry point
\r
607 ;===========- By the way, a semicolon means the start of a comment.
\r
609 If you were to enter this program and TASM & TLINK it, it would execute
\r
610 perfectly. It will do absolutly nothing, but it will do it well.
\r
613 Upon execution, it will jump to START. move 4c00h into AX,
\r
614 and call the DOS interrupt, which exits back to DOS.
\r
617 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
\r
619 That's nice, eh? If you've understood the majority of what was presented
\r
620 in this document, you are ready to start programming!
\r
622 See ASM0.TXT and ASM0.ASM to continue this wonderful assembler stuff...
\r
625 Written By Draeden/VLA
\r